Optomechanical Switching of Azobenzene

Martin Konôpka ${ }^{1,2}$ Nikos L. Doltsinis ${ }^{2}$ Ivan Štich ${ }^{1}$ Dominik Marx ${ }^{2}$

${ }^{1}$ Center for Computational Materials Science, Department of Physics, Slovak University of Technology, 81219 Bratislava, Slovakia
${ }^{2}$ Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

The 10th Results and Review Workshop of the HLRS, 2007, Stuttgart

introduction

－azobenzene（ AB ）exists in two different isomers：
－trans－lowest energy structure，CNNC dihedral 180°
－cis－about $12 \mathrm{kcal} / \mathrm{mol}(0.52 \mathrm{eV})$ higher in energy

－barrier about $35 \mathrm{kcal} / \mathrm{mol}(1.52 \mathrm{eV})$ above the trans－AB energy
－optical switching possible via excited singlet states，e．g． $S_{0} \leftrightarrow S_{1}$［ n（HOMO）and π^{*}（LUMO）orbitals in effect］
－most useful applications when $A B$ is embedded

single-molecule optomechanically driven junction

aimed functionality:

- switching between two electric current flows by applied laser pulses
- continuous current variations by applied stretching force
- sensor for the applied stretch/force
expt. setup: J. Reichert, H. Fuchs (Univ. Muenster)

objectives of the present computational study

- impact of mechanical strain
- Is the optical switching possible for such an embedded $A B$?
- CNNC rotation or NNC inversion or ...?
- What extensions are favourable for the isomerization?
- ...
- impact of chemical properties of gold-thiolate environment
- Does the $n \rightarrow \pi^{*}$ electronic structure survive?
- How much are excitation energies modified?
- focus on mechanical impact of the gold-thiolate environment
- effect of the electrodes qualitatively modeled by harmonic restraining potentials:

\Rightarrow dithioazobenzene (DAB) with restrained sulfur atoms in dynamical simulations
- varying the distance between the two restraining centres mimics variations of a distance between electrodes of an STM/AFM apparatus
- S_{0} state by Density Functional Theory (DFT) with PBE functional [1, 2], Goedecker pseudopotentials [3] and plane waves
- S_{1} state by generalized [7] ROKS [6] extension to DFT
- atomar structure by either molecular dynamics simulations or static geometry optimization
- computer code: CPMD $[4,5]$

- the ultrafast rotation upon $S_{0} \rightarrow S_{1}$ switch present regardless the value of the pulling force applied

results: tuning dexcitation gap (1)

average deexcitation gaps over 0.5 ps trajectory

molecule conformation before S_{0}--> S_{1} switch:
--- trans, free molecule

- trans, restraints used
--- cis, free molecule - cis, restraints used molecule extension before switch / \AA
- absolute energy gap significantly red-shifted by mROKS
- gap changes vs. applied stretch captured more reliably
- average gaps for unrestrained (free) DAB important as a reference (related to most experimental data)
- tuning deexcitation gap

results: isomerization ?

the problem of different lengths \Rightarrow mechanical hindrance

- cis \rightarrow trans: more probable for stretched cis structure
- trans \rightarrow cis: more probable in compression regime

results: cis \rightarrow trans isomerization

results: chemical effect of gold electrodes (1)

local density of states (LDOS) used as a tool:

$$
\rho(E, \vec{r})=\sum_{i}\left|\psi_{i}(\vec{r})\right|^{2} \delta\left(E-E_{i}\right)
$$

LDOS integral over CNNC region * eV

results: chemical effect of gold electrodes (2)

- qualitative impact:
- the n and π^{*} orbitals no more HOMO and LUMO
- quantitative impacts:
- noticeable red-shift of the excitation energy especially for cis conformation
- modified weigths of particular orbitals
- conclusions from LDOS:
- electronic structure of CNNC qualitatively unchanged
\Rightarrow optical $n \leftrightarrow \pi^{*}$ switching should remain possible for $A B$ bound to gold
\Rightarrow the restraint model qualitatively appropriate

conclusions

- rotational isomerization path possible for azobenzene used as a single-molecule junction
- efficient isomerization only within a matching-length interval
- compression of trans- AB should increase trans \rightarrow cis photoisomerisation yield
- tuning the isomerization yield by applied mechanical force should be possible

Acknowledgments

Financial support from Volkswagen-Stiftung (Stressmol), APVT (20-019202), DFG, and FCI are gratefully acknowledged as well as computer resources from SSC Karlsruhe, Bovilab@RUB, Recherverbund-NRW, and CCMS.

Atomar structure files for visualization of the gold-azobenzene system provided by Robert Turanský.

References

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996).

CPMD, Copyright IBM Corp 1990-2006, Copyright MPI für Festkörperforschung Stuttgart 1997-2001; see www. cpmd.org .
D. Marx, J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, edited by Grotendorst, J. (NIC, FZ Jülich, 2000), p. 301-449, see www.theochem.rub.de/go/cprev.html .
I. Frank, J. Hutter, D. Marx, M. Parinello, J. Chem. Phys. 108, 4060 (1998).
S. Grimm, Ch. Nonnenberg, I. Frank, J. Chem. Phys. 119, 11574 (2003).

potential-energy surfaces (DFT-based vs. CASPT2)

PESs along S_{0} optimized CNNC-constrained geometries (pure AB)

*adapted from Gagliardi et al. [Theor.Chem.Acc. 111, 363 (2004)]

dithioazobenzene static pulling/compression

red: $C i \boldsymbol{S}$ (turns into trans when stretched above 5.1 A)
blue: trans ($\mathrm{S}-\mathrm{C}$ bond broken at the end)
S_{1} : only one isomer
$=\Rightarrow$ the curves overlap

Konôpka,Doltsinis,Štich,Marx

- the ultrafast rotation present especially at smaller stretches
- very fast partial opening of NNC angles at larger stretches

average deexcitation gaps over 0.5 ps trajectory

blue: harder restraint red: softer restraint black: no restraint
molecule conformation
before $S_{0}-->S_{1}$ switch:
- trans
- trans
- cis
--- trans
molecule extension / \AA

45035 つa^

tuning dexcitation gap (comments)

- significant dependence of the gap on the extension
\Rightarrow tuning the isomerization yield through the controll of the gap by applied mechanical force possible
- effect of restraint stiffness noticeable
- maximum applicable extensions limited by unavoidable effects:
- cis isomer: max. extension $\approx 4.5 \AA \AA$; beyond this the molecule turns into trans-DAB (in ground state!)
- trans isomer: S-C or N-C bond breaks at stretches above $1.6 \AA$
- breaking of the junctions or electrodes

computational side - comparisons

number of processors	4	8	16
IBM-SP Power2	3495.00	1482.80	681.33
Opteron244 Intel ATLAS	1708.22	754.46	341.82
HP-XC Itanium2 2proc 1.5 GHz nodes	668.82	321.51	135.90
HP-XC Itanium2 16proc 1.6 GHz node	839.51	450.26	NA
IBM-SMP Power5 ATLAS	719.37	383.81	203.93

Table: total execution times in seconds

- $135.90 / 321.51 \approx 0.423$ reduction of comput. time by switching from 8 to 16 proc.
- reduction of comput. time to 20% by switching from 4 to 16 proc.

